Call for Abstract

World Digital Pathology & Pathologists Congress, will be organized around the theme “Transforming Pathology with Complete Digital Solutions”

Digital Pathology 2016 is comprised of 24 tracks and 121 sessions designed to offer comprehensive sessions that address current issues in Digital Pathology 2016.

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

To formulate medical decisions, healthcare experts require that all essential information is both are accurate and easily accessible. Collaborative Digital Anatomic Pathology discus about the use of information technology that supports the formation and distribution or exchange of information, including metadata and images, throughout the complex workflow monitored in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology is supported by standardization efforts towards interoperability and knowledge representation for shareable and computable clinical information. Digital Pathology expands the limits of microscopy, enabling students, educators, researchers, and clinicians to contribute tissue samples. Images transmitted or shared over the Internet or through specific analysis software open the path to a modern and exciting microscopy tool. Digital Pathology excludes some of the issues associated with sharing slides such as the degeneration of samples and inability to share samples of live cells.  Benefits include: Diagnostics – a hospital can transmit images anywhere in the world, probably decreasing the time it takes to accordingly diagnose and treat a pathogen. Education – colleges and universities can approach an enormous database of samples, via on-line or through a web database, saving fund on histological slides; students and professors will also have the capability to study images of live and dead cells Finances – savings can be establish from decreasing or eliminating purchases of glass slides, cover-slips, adhesives and dyes as well as the cost to conserve and send pathology exhibit to colleagues or institutions

  • Track 1-1Bone pathology
  • Track 1-2Benefits and future development of digital pathology
  • Track 1-3Quality control and improvements
  • Track 1-4Digital pathology project updates
  • Track 1-5Technology advances in digital pathology
  • Track 1-6Standardization in digital pathology
  • Track 1-7Converting to/ integration of the pathology
  • Track 1-8Implications on pathology practice
  • Track 1-9Algorithm development

Pathology Informatics concentrates on the management and analysis of clinical and research pathology data using modern computing, communications and digital imaging methods. The Division of Pathology Informatics has grown to a nationally acknowledged informatics organization at the University of Pittsburgh Medical Center (UPMC) prepares pathologists grows to be leaders in the development and application of informatics in educational, industry and/or community practice settings. Sharing digital pathology images for firm wide use into a picture archiving and communication system (PACS) is not yet extensively adopted. We share our solution and 3-year experience of broadcasting such images to an Enterprise Image Server (EIS). A computerized picture archiving and communications system (PACS) has been successfully used in the stream of radiology for storage, rapid retrieval, and widespread access to digital images. Digital images can be captured using multiple modalities and many PACS users at different sites can have at the same time, remote access to images. Both computerized images and reports can be transmitted digitally via PACS. Whole slide imaging (WSI), also indicated to as "virtual" or wide-field microscopy, associate with digitization of glass slides, which resembles light microscopy (i.e. "digital slides"). WSI produces high-resolution digital images and associates with relatively high speed digitization of glass slides of different samples (e.g. tissue sections, smears), scanning them at various magnifications and focal planes (xy and z axes). Compared to immovable (still) and live (usually robotic) digital images, WSI is commonly more beneficial for educational purposes.

  • Track 2-1Acquisitions, processing, archiving and retrieval of WSI
  • Track 2-2Access through mobile devices
  • Track 2-3Cloud computing
  • Track 2-4Access through mobile devices
  • Track 2-5Pathology PACS
  • Track 2-6Automation
  • Track 2-7Improving WSI workflow efficiency

Telepathology can be described as the electronic transmission of digital images of pathology for education, examination, diagnosis, or conference. Since its first proof-of-concept demonstration in 1968, this technology has resulted in close to 600 magazines and has been used with ever-growing rate throughout the world. From a medical point of view, telepathology has developed from point-to-point transmission of live or near-live video images, to the capture of digital images of preferred  microscopic fields for storage and future transmission, to robotic control of the microscope with quick point-to-point transmission, to improvement of software that simplifies Web-based consultations and interactions, to the generation of virtual slides that characterize the entire slide for stress-free Web site access or for storage. The basic machineries of a telepathology system are a microscope with an attached digital camera connected to a computer. Basic systems deliver an image that can be stored and sent via e-mail or the Internet to a professional for consultation. The cost and difficulty of a basic simple system increases with the accumulation of a robotic microscope and point-to-point transmission but permits the observer to control slide movement, concentration, and use objective selection. Virtual-slide technology, the most expensive of the possibilities for telepathology, forms a particular single image of a glass slide. These tools combine an objective (310 to340) with computerized stage and digital camera with the computer power to promptly obtain a sequence of images that are automatically stitched together in software and compressed to form a single image file of the slide. All of these systems are presently used for all phases of telepathology, but each differs in its applicability in providing pathology financial assistance for countries in the developing world or in regions with limited resources.

 

  • Track 3-1Virtual networks
  • Track 3-2Use in remote areas
  • Track 3-3Telediagnosis
  • Track 3-4Pathology IT

A digital image composed of pixels performs an analog image transformed to numerical form using ones and zeros (binary) so that it can be stored and used in a computer system. The digital imaging process consists of four key steps: image acquisition (capture), storage and management (saving), manipulation and annotation (editing), and viewing, display or transmission (sharing) of images. Before digital images become extensively used for periodic clinical work, standards are needed and the entire imaging process approved. For example, when six practicing pathologists were asked to all photographs the same section on a glass slide with similar microscopes that had the same associated digital cameras, they all produce dissimilar images.  Moreover, global manipulation (e.g. contrast enhancement) of Papanicolaou test digital images has been shown to significantly change their interpretation. We also need to pay more consideration to the digital pathology diagnosing station (cockpit) to that they integrate computers with appropriate performance and graphics cards, screens with exceptional image resolution and color quality, as well as connectivity to the Internet, laboratory information system (LIS) and electronic medical record (EMR). The use of computer monitors for digital pathology should, possibly, employ a Macbeth color manager (array of color squares) or correspondent to guarantee precise color balance once a digital image has been developed, computer applications can be leveraged to evaluate the information they hold. More than a few algorithms have been developed (e.g. pattern recognition algorithms) that potential to increase accuracy, reliability, specificity, and productivity. For example, computer assisted image analysis (CAIA) has been used to score (quantify) certain immunohistochemical stains (e.g. ER, PR and HER-2/neu breast biomarkers). In this manner, CAIA gives all pathologists the similar yardstick for scoring immunohistochemistry results in Breast cancer cases. This quantitative method to tissue analysis using WSI has been stated to as "slide-based histocytometry". Multispectral image analysis is additional emerging device that exploits both spatial and spectral image statistics to classify images. This computerized technology has already been shown to be important in certain clinical settings (e.g. cytopathology) to help distinguish and classify morphologically similar lesions.

  • Track 4-1Analysis software
  • Track 4-2Challenges in image analysis
  • Track 4-3Quantitative image analysis reasearch
  • Track 4-4Visualization methods for diagnosis
  • Track 4-5Annotation tools
  • Track 4-6Pattern recognition
  • Track 4-7Automated image analysis

Prior to slide digitization, skilled pathologists examined clinical trial data to determine evidence of disease and diagnose disease by reviewing glass specimen slides utilizing microscopes. To acquire interpretations, more than a few sets of slides were arranged from each patient’s tissue block, each slide comprising a different level of tissue, and shipped to reviewers. As a result of the alteration in tissue levels, variability in inter-reader interpretations of specimens was improved. Digital pathology decreases such variability by providing reviewers with matching digital images of patients’ tissue.  The field of digital pathology has exploded and is now regarded as one of the most promising avenues of diagnostic medicine in order to attain even better, faster and inexpensive diagnosis, prognosis and prediction of cancer and other significant diseases. Digital pathology and the implementation of image analysis have grown rapidly in the last few years. This is mostly due to the implementation of whole slide scanning, improvements in software and computer processing capacity and the increasing position of tissue-based research for biomarker discovery and stratified medicine. This review sets out the key application regions for digital pathology and image analysis, with a particular emphasis on research and biomarker discovery. Digital pathology and image analysis have significant roles across the drug/companion diagnostic improvement pipeline including biobanking, molecular pathology, tissue microarray analysis, molecular profiling of tissue and these significant developments are reviewed. Underpinning all of these significant developments is the necessity for high quality tissue samples and the effect of pre-analytical variables on tissue research is discussed. This requirement is merged with practical advice on setting up and running a digital pathology laboratory. 

  • Track 5-1Clinical trials
  • Track 5-2Diagnosis
  • Track 5-3Diagnostics
  • Track 5-4Biomarker analysis /research / quantification
  • Track 5-5Tissue based research / imaging
  • Track 5-6Biobanking
  • Track 5-7Precision / personalized medicine

Digital pathology can be considered as an adjunct to traditional microscopy. In traditional microscopy, we require a microscope to view the glass slide. We can only view one slide, one field of view, and one exaggeration at a time. If we want to do any sort of analysis with a microscope, we have to remember the information from each field of view. For example, if we want to associate two slides, we have to look at one slide, store the information in our brain bank, look at the slide, and try to remember the one we looked at prior to make a comparison. In digital pathology, we have the benefit of doing things different way. We can view some digital slides on a computer monitor. We can combine them side-by-side if we want to calculate the entire cells or calculate protein expression; these can be done easily by computer software that can be seen on an image file and it is called a digital slide. In case of traditional microscopy, if we want to transfer the data with someone in a distant place, the slide has to be mailed. But with digital pathology, we can transmit the data with anyone in the world directly. It is also comparatively very easy to integrate a digital pathology system into a laboratory data system. Digital pathology can support the monitoring and consolidation of different sources of information required for pathological purposes to do work more proficiently and innovatively.

Digital pathology is extensively more than whole slide imaging (WSI); it has data security and creates an environment for handling data that consists of multi-gigabyte images that are merged. It also comprises integration of the digital pathology data management system with autostainers, converslippers, and the laboratory management system. It comprises the following elements. Conventional glass slides are converted to digital slides using a scanning device. Digital slide scanners are considered as successors of early telepathology systems that facilitated the transfer of static and dynamic images via computer networks for remote consultation and second opinion. Digital slides are accessible for viewing through computer system and viewing software either locally or remotely via the Internet. Digital slides viewers can show an overview image, along with high-power view, enabling better orientation. Showing two or more slides side-by-side is a characteristics of many slide viewers, which can be useful for analyze the same tissue contaminate with different stainings. Digital slides are sustained in an information management system that permits archival and intelligent retrieval. Educational and examination slides end up in the constant storage where they are kept without an invalidating time frame. Object-based storage offers overall redundancy of stored objects without the necessity to take incremental backups. Digital slides are maintained in a data management system that allows for archival and intelligent retrieval. Image examination tools are used to derive objective quantification procedures from digital slides. Pattern recognition and visual search tools are used to categorize specimen imagery and discover medically significant regions of digital slides. Digital pathology workflow is integrated into the institution's overall operational background. Digital pathology also permits internet information transmitting for education, diagnostics, publication and research.

  • Track 7-1Scanner
  • Track 7-2Slide viewer
  • Track 7-3Storage
  • Track 7-4Manage
  • Track 7-5Analyze
  • Track 7-6Integrate
  • Track 7-7Sharing

Currently, the standard Digital pathology workflow begins with the procedure performed on the patient, most commonly a biopsy or a resection. The material is then sent to a pathology division associated by an order (ideally in a digital way), along with appropriate clinical information. This information regularly comes out of the local electronic health records, simultaneously with localization and clinical information of the material. When the material is received in the pathology department, it is registered in the local laboratory information system before undergoing the necessary procedure in order to be managed to glass slides. Then, the glass slides are observed under a light microscope in order to create the pathology report. Switching the current workflow to a fully digital one would require glass slides to be scanned prior to sending them to pathologists, which can add cumulatively to the overall diagnosis time. This can be concentrated by using speed scanners and integrating the scanning with the cover slipping and staining method. Thus, digital pathology workflow is incorporated into the institution overall operational environment.

Many articles are being published regarding its use in routine pathologic diagnosis. Validation of a WSI system for primary diagnosis in surgical pathology has been studied. Even the concordance between digital pathology and light microscopy in general surgical pathology has been studied in a pilot study of 100 cases, and it was found that digital pathology is a safe and viable method of making a primary histological diagnosis. Digital pathology is being increasingly tried in the interpretation of immunohistochemistry (IHC) markers. Interpretation of human epidermal growth factor receptor 2 (HER2/neu) immunohistochemical expressions with unaided as well as computer-aided digital microscopy as well has been documented. Digital pathology has penetrated classrooms, especially pathology teachings. It can effectively replace the traditional methods of learning pathology by providing mobility and convenience to medical students.

  • Track 9-1Surgical pathology
  • Track 9-2Immunohistochemistry
  • Track 9-3Teaching program

During the last decade pathology has promoted from the quick progress of image digitizing technology. The development in this technology had led to the formation of slide scanners which are incapable to produce whole slide images (WSI) which can be discovered by image viewers in a way comparable to the conventional microscope. The file size of the WSI varies from a few megabytes to several gigabytes, leading to contests in the area of image storage and management when they will be used regularly in daily clinical practice. Digital slides are used in pathology for education, diagnostic purpose (clinicopathological meetings, consultations, revisions, slide panels and, increasingly, for direct clinical diagnostics) and archiving. As an alternative to conservative slides, WSI are usually well accepted, especially in education, where they are obtainable to a large number of students with the full possibilities of annotations without the problem of difference between serial sections. Image processing techniques can also be functional to WSI, providing pathologists with tools assisting in the diagnosis-making procedure.

Dermatopathology is a subspecialty of both pathology and dermatology in which adequate clinical info is essential to a valid tissue diagnosis. Dermatopathology is a subspecialty of anatomic pathology that emphases on the skin and the rest of the integumentary system as an organ. It is unique, in that there are two paths a physician can take to obtain the specialization. All general pathologists and general dermatologists train in the pathology of the skin, so the term dermatopathologist denotes either of these who has reached a certainly level accreditation and experience. Dermatologists are able to recognize most skin diseases based on their appearances, anatomic distributions, and behavior. Sometimes, however, those criteria do not lead to a conclusive diagnosis, and a skin biopsy is taken to be examined under the microscope using usual histological tests. In some cases, additional specialized testing needs to be performed on biopsies, including immunofluorescenceimmunohistochemistry, electronmicroscopy, flow cytometry, and molecular-pathologic analysis.

  • Track 11-1Dermatomyositis
  • Track 11-2Virtual Dermatopathology
  • Track 11-3Reactive Erythemas
  • Track 11-4Eczema
  • Track 11-5Digital Skin Cancer and Screening
  • Track 11-6Psoriasis
  • Track 11-7Basal Cell Carcinoma
  • Track 11-8Squamous cell Carcinoma
  • Track 11-9Vitiligo

Molecular genetics is the field of biology and genetics that studies the structure and function of genes at a molecular level. The study of chromosomes and gene expression of an organism can give insight into heredity, genetic variation, and mutations. This is useful in the study of developmental biology and in understanding and treating genetic diseases. The subspecialty of Molecular Genetic Pathology employs testing of nucleic acids (DNA and RNA) for disease diagnosis. A variety of tests for the presence of mutations in DNA, chromosomal translocations, and altered levels of RNA (gene expression) are used in four general areas of disease:

  • Track 12-1Hereditary diseases
  • Track 12-2Hematologic malignancies
  • Track 12-3Solid tumors
  • Track 12-4Infectious diseases

Anatomical pathology is the significant claim to fame of pathology that arrangements with the investigation of the morphologic parts of infection. Anatomical Pathology worries with the finding of tissue and organ based large scale or tiny testing. The most recent exploration experiences from the accompanying themes such as Radio recurrence recognizable proof and example following, propelled biosafety hones, Multi-model anatomical pathology and Anatomical pathology of sexually transmitted maladies.

  • Track 13-1Radiofrequency identification & specimen tracking in anatomical pathology
  • Track 13-2Challenges and role of anatomical pathology in diseases
  • Track 13-3Advanced biosafety practices in anatomical laboratories
  • Track 13-4Anatomical responses of infections in pathology
  • Track 13-5Challenges in anatomical pathology of cancer
  • Track 13-6Multi-model anatomical pathology
  • Track 13-7Anatomical pathology of sexually transmitted diseases

Forensic pathology is a sub-claim to fame of pathology that spotlights on examining so as to decide the reason for death a cadaver. The post-mortem examination is performed by a restorative analyst, more often than not amid the examination of criminal law cases and common law cases in a few purviews. This incorporates measurable post-mortem contextual analyses, determination of after death interim, MRNA examination of death examinations, criminological veterinary pathology (utilization of veterinary pharmaceutical to the legal sciences), and suggestions in legal pathology and posthumous interim investigation

  • Track 14-1Advanced research techniques in forensic pathology
  • Track 14-2Forensic radiology and imaging
  • Track 14-3Clinical forensic medicine
  • Track 14-4Clinical forensic medicine
  • Track 14-5Forensic autopsy-case studies
  • Track 14-6Pediatric forensic pathology
  • Track 14-7Molecular forensic pathology
  • Track 14-8Applications of molecular biology to forensic pathology

Renal Pathology is a subtopic of anatomical pathology that with the conclusion and portrayal of kidney related maladies. The renal pathology research discoveries are connected with light microscopy, electron microscopy and immunofluorescence to acquire the precise analysis. Renal Pathology or kidney pathology covers the themes poisonous tubular corruption, renal carcinomas, Diabetic glomerulosclerosis and other kidney related infections analysed under magnifying lens or sub-atomic testing. Renal pathology in nephrology, poisons, tumors and Pathology of lupus glomerulonephritis are likewise vital examination points for renal pathology. Therapeutic renal sicknesses might influence the glomerulus, the tubules and interstitium, the vessels, or a mix of these compartments.

  • Track 15-1Renal pathology of toxins
  • Track 15-2Renal pathology in nephrology
  • Track 15-3Pathology of renal tumors

Gastrointestinal pathology is the subspecialty of surgical pathology which deals with the determination and depiction of neoplastic and non-neoplastic diseases of the digestive tract and additional organs, for instance, the pancreas and liver. Different liver limit tests are available to test the right limit of the liver. These tests for the region of chemicals in blood that are ordinarily most plenteous in liver tissue, metabolites or things. serum proteins, serum egg whites, serum globulin, alanine transaminase, aspartate transaminase, prothrombin time, partial thromboplastin time. The enthusiasm for gastroenterology care and symptomatic systems continue extending, driven by a growing rate of gastrointestinal infection and the prerequisite for colorectal development screening in the developing patients.

  • Track 16-1Non-neoplastic and neoplastic
  • Track 16-2Neoplasms
  • Track 16-3Molecular Diagnostics
  • Track 16-4Polyposis Syndromes

Dermatopathology is a joint subspecialty of dermatology and pathology and to a lesser degree of surgical pathology that spotlights on the investigation of cutaneous sicknesses at a minute and sub-atomic level. It likewise includes examinations of the potential reasons for skin sicknesses at a fundamental level. Actually, the greater part of them is prepared basically in dermatology themselves. 

Acne vulgaris (or simply acne) is a long-term skin disease that occurs when hair follicles become clogged with dead skin cells and oil from the skin. Acne is characterized by areas of blackheads, whiteheads, pimples, and greasy skin, and may result in scarring. The resulting appearance can lead to anxiety, reduced self-esteem and, in extreme cases, depression or thoughts of suicide. Acne Treatment is done to overcome this skin disease.

Dermatologists can perceive most skin illnesses taking into account their appearances, anatomic conveyances, and conduct. Once in a while, be that as it may, those criteria don't permit a convincing analysis to be made, and a skin biopsy is taken to be inspected under the magnifying instrument or subject to other atomic tests. That procedure uncovers the histology of the malady and results in a particular symptomatic elucidation. Now and again, extra particular testing should be performed on biopsies, including immunofluorescence, immunohistochemistry, electron microscopy, stream cytometry, and atomic pathologic examination.

  • Track 17-1Molluscum contagiosum
  • Track 17-2Advanced molecular testing
  • Track 17-3Dermatopathology diagnosis
  • Track 17-4Skin Histopathology
  • Track 17-5Dermatopathology in forensic autopsy
  • Track 17-6Neoplastic & inflammatory diseases
  • Track 17-7Merkel cell carcinoma

Veterinary Pathology is the study and analysis of creature illness by utilizing creature tissue and liquids. Veterinary Pathology is arranged into two fundamental teaches; those are veterinary anatomical pathology and veterinary clinical pathology. Veterinary Pathology manages the accompanying sicknesses like Veterinary parasite maladies and Veterinary parasitology though Veterinary clinical pathology manages the determination of illness in light of the research facility examination. The American school of veterinary pathologists and European school veterinary pathologists are the primary associations taking a shot at pathology research and allows for the exploration. Veterinary pathology gives a basic connection between the fundamental and clinical sciences.

  • Track 18-1Advanced diagnostic Techniques
  • Track 18-2Veterinary clinical pathology
  • Track 18-3Veterinary parasitology
  • Track 18-4Veterinary parasite diseases
  • Track 18-5Comparative Pathology
  • Track 18-6Veterinary Anatomical Pathology

Hematopathology is a subspecialty of pathology. Hematopathology worry with the investigation of hematopoietic cells maladies and hematological issue. An extensive variety of finding test are done in Acute and endless leukemia, Myelodysplastic disorders, Myeloproliferative issue, Anemias, Benign bone marrow and lymph hub issue, B-cell lymphomas and T-cell lymphomas and Cutaneous lymphomas

  • Track 19-1Cutaneous B - cell and T- cell Lymphomas
  • Track 19-2Immunophenotyping
  • Track 19-3Molecular Techniques in Hematopathology
  • Track 19-4Hematopathology of Lymphoma

Alludes to the tiny examination of different types of human tissue. In particular, in clinical medication, histopathology alludes to the examination of a biopsy or surgical example by a pathologist, after the example has been prepared and histological segments have been put onto glass slides. This stands out from the techniques for cytopathology which uses free cells or tissue sections. Histopathological examination of tissues begins withsurgery, biopsy, or dissection. The tissue is expelled from the body of a life form and after that set in a fixative which settles the tissues to forestall rot. The most widely recognized fixative is formalin, albeit solidified segment settling is likewise normal. To see the tissue under a magnifying instrument, the segments are recolored with one or more shades. The point of recoloring is to uncover cell segments; counterstains are utilized to give contrast. Histochemistry alludes to the study of utilizing concoction responses between research facility chemicals and parts inside of tissue. The histological slides are then translated indicatively and the subsequent pathology report portrays the histological discoveries and the conclusion of the pathologist. On account of disease, this speaks to the tissue finding required for most treatment conventions.

  • Track 20-1Formalin
  • Track 20-2Cellular components
  • Track 20-3Histochemistry
  • Track 20-4Clinical medicine
  • Track 20-5Tissue fragments
  • Track 20-6Autopsy

Surgical pathology is the examination of tissues ousted from living patients in the midst of surgery to investigate a disease and center a treatment plan. Frequently, the surgical pathologist gives interview advantages in a wide variety of organ signs and subspecialties. Surgical pathologists give symptomatic information and/or second conclusions. For example, when performing bosom malignancy surgery, a surgical pathologist's examination of tissues isolated amid the surgery can help the pro to make sense of if to clear lymph hubs under the arm, moreover. Surgical pathology fuses both the physical examination of the tissue with the exposed eye, and investigating took care of tissue under an amplifying instrument.

  • Track 21-1Surgical and autopsy pathology
  • Track 21-2Surgical pathology specimens
  • Track 21-3Biopsy and surgical pathology

Chemical Pathology is the branch of pathology managing the biochemical premise of malady and the utilization of biochemical tests for screening, finding, forecast and management. Chemical pathologists have two imperative clinical parts. The first is liaising with social insurance experts, for example, general specialists, medical attendants, non-advisor and other advisor specialists to give guidance on which tests to utilize and how to translate the aftereffects of the tests when researching patients. This generally incorporates an extensive variety of conditions, for example, liver malady, kidney infection, elevated cholesterol, tumor, diabetes, and hormone lopsided characteristics. The second is having direct obligation regarding patients in out-patient facilities and on the healing center wards. In these settings, substance pathologists analyze and treat an extensive variety of metabolic issue, for example, elevated cholesterol, diabetes, hormone irregular characteristics, kidney stones, bone malady and nourishment imbalances.Chemical pathologists are likewise in charge of the procurement of a solid logical administration. This incorporates measuring markers of liver and kidney capacity, hormones, medications and tumor markers in hundreds to a large number of patient examples consistently. Large portions of these analytes are measured on robotized analysers worked by biomedical researchers. The administration, certification of value and procurement of exhortation on the decision of tests and appraisal of the importance of the outcomes (particularly with a portion of the more unprecedented tests) are the region of the chemical pathologist.

  • Track 22-1Biochemical basis of diseases
  • Track 22-2Hormone imbalances
  • Track 22-3Bone diseases
  • Track 22-4Nutrition imbalances

A broadest meaning of molecular pathology is the investigation of particles in an ailment state. In this connection, the particles concentrated on are DNA, RNA and/or protein. Segments of DNA (known as qualities) go about as layouts for the generation of RNA which thusly goes about as a format for the creation of protein. Atomic pathology tests might search for the vicinity or nonappearance of protein or RNA, or for an expansion or abatement in the measure of these particles. Other atomic pathology tests search for revisions of vast parts of DNA (these rearrangments are known as translocations) or for particular changes to the creation of qualities (these progressions are known as transformations). Sub-atomic pathology can be utilized to analyze illness and/or to manage the counteractive action and treatment of infection. As a sample of the previous, diseases by certain infections (e.g. cytomegalovirus and Epstein-Barr infection) can be analyzed by sub-atomic testing for the vicinity of their particular RNAs in blood. In the field of growth pathology, the show of a particular quality change or modification can affirm the conclusion of specific lymphomas and sarcomas. Molecular pathology can help with the aversion and/or treatment of malady in a few ways. Initially, tests that search for acquired hereditary malady take into consideration protection measures to be given to the tried patients and/or their relatives; as an illustration of this, colorectal tumor patients can be tried for the vicinity of acquired changes in qualities, for example, APC. Second, atomic tests can screen the reaction of specific ailments to treatment and can recognize regardless of whether the infection has returned, e.g. Bcr-Abl testing in leukaemias. At last, there has been extraordinary late enthusiasm for utilizing atomic testing to anticipate the reaction of certain "strong" tumors to particular medications. This prescient testing frames the premise of 'customized drug' for such tumor patients, and incorporates: HER2 testing in bosom and gastric malignancy; EGFR and ALK1 testing in lung growth; BRAF testing in melanoma; and KRAS testing in colorectal disease. This type of prescient testing is as of now a specific development range in atomic pathology, and along these lines speaks to the starting essential center of the ACP Molecular Pathology Committee.

  • Track 23-1Mutations
  • Track 23-2Genetic disease
  • Track 23-3Leukaemias
  • Track 23-4Lymphomas
  • Track 23-5Sarcomas
  • Track 23-6Melanoma
  • Track 23-7Colorectal cancer

Gynaecologic pathology is the therapeutic pathology subspecialty managing the study and determination of ailment including the female genital tract. A doctor who rehearses gynecologic pathology is a gynaecologic pathologist.

It is the branch of drug managing the organization of medicinal services to ladies, particularly the analysis and treatment of scatters influencing the female regenerative organs.it manages the investigation of sicknesses of the female conceptive organs, including the breasts.

Gynecology and Obstetrics is the therapeutic and surgical strength that spotlights on the examination plan of regenerative framework in females that incorporates Archives of gynecology and obstetrics, Placenta separate, Consumptive coagulopathy, Allantoic growth, Adherent placenta, Schiller duval bodies, schiller duval, Perspective harmonies, Sad harmonies, Myometrial attack, Myxoid leiomyosarcoma, Multiple myomas, Cholinergic poisonous quality, Cholinergic harming, natural, surgical, clinical and restorative viewpoints on Gynaecologic oncology, Placenta Extract, Vaginal Melanoma, Myometrial Invasion, Uterovesical, dismal sounding harmonies, Gynecology, Birthcontrol, Fallopian tubes, Endometriosis, Menstrual cycle, Pregnancy, Hysterectomy, cervical malignancy, endometrial tumor, Polycystic ovary disorder, Pregnancy Diabetes, Cesarean conveyance, Corpus Luteum, Obstetrics, Menopause Symptoms, IUD, Fallopian tube Cancer, Artificial insemination, Midwifery, Abortion pill and so on.

  • Track 24-1 Reproductive pathology
  • Track 24-2Embryonic Oxidative Stress
  • Track 24-3Placenta and Obesity
  • Track 24-4Reproductive toxicity of Chemicals
  • Track 24-5Human Embryonic and Stem Cell